Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.542
Filtrar
1.
Sci Rep ; 14(1): 8902, 2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632250

RESUMO

Colorectal cancer (CRC) is the third most common cancer affecting people. The discovery of new, non-invasive, specific, and sensitive molecular biomarkers for CRC may assist in the diagnosis and support therapeutic decision making. Exosomal miRNAs have been demonstrated in carcinogenesis and CRC development, which makes these miRNAs strong biomarkers for CRC. Deep sequencing allows a robust high-throughput informatics investigation of the types and abundance of exosomal miRNAs. Thus, exosomal miRNAs can be efficiently examined as diagnostic biomarkers for disease screening. In the present study, a number of 660 mature miRNAs were detected in patients diagnosed with CRC at different stages. Of which, 29 miRNAs were differentially expressed in CRC patients compared with healthy controls. Twenty-nine miRNAs with high abundance levels were further selected for subsequent analysis. These miRNAs were either highly up-regulated (e.g., let-7a-5p, let-7c-5p, let-7f-5p, let-7d-3p, miR-423-5p, miR-3184-5p, and miR-584) or down-regulated (e.g., miR-30a-5p, miR-99-5p, miR-150-5p, miR-26-5p and miR-204-5p). These miRNAs influence critical genes in CRC, leading to either tumor growth or suppression. Most of the reported diagnostic exosomal miRNAs were shown to be circulating in blood serum. The latter is a novel miRNA that was found in exosomal profile of blood serum. Some of the predicted target genes of highly expressed miRNAs participate in several cancer pathways, including CRC pathway. These target genes include tumor suppressor genes, oncogenes and DNA repair genes. Main focus was given to multiple critical signaling cross-talking pathways including transforming growth factor ß (TGFß) signaling pathways that are directly linked to CRC. In conclusion, we recommend further analysis in order to experimentally confirm exact relationships between selected differentially expressed miRNAs and their predicted target genes and downstream functional consequences.


Assuntos
Neoplasias Colorretais , Exossomos , MicroRNAs , Humanos , MicroRNAs/genética , Soro/metabolismo , Neoplasias Colorretais/patologia , Prognóstico , Biomarcadores/metabolismo , Exossomos/metabolismo
2.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38473877

RESUMO

Metastatic castration-resistant prostate cancer (mCRPC) remains a lethal disease due to the absence of effective therapies. A more comprehensive understanding of molecular events, encompassing the dysregulation of microRNAs (miRs) and metabolic reprogramming, holds the potential to unveil precise mechanisms underlying mCRPC. This study aims to assess the expression of selected serum exosomal miRs (miR-15a, miR-16, miR-19a-3p, miR-21, and miR-141a-3p) alongside serum metabolomic profiling and their correlation in patients with mCRPC and benign prostate hyperplasia (BPH). Blood serum samples from mCRPC patients (n = 51) and BPH patients (n = 48) underwent metabolome analysis through 1H-NMR spectroscopy. The expression levels of serum exosomal miRs in mCRPC and BPH patients were evaluated using a quantitative real-time polymerase chain reaction (qRT-PCR). The 1H-NMR metabolomics analysis revealed significant alterations in lactate, acetate, citrate, 3-hydroxybutyrate, and branched-chain amino acids (BCAAs, including valine, leucine, and isoleucine) in mCRPC patients compared to BPH patients. MiR-15a, miR-16, miR-19a-3p, and miR-21 exhibited a downregulation of more than twofold in the mCRPC group. Significant correlations were predominantly observed between lactate, citrate, acetate, and miR-15a, miR-16, miR-19a-3p, and miR-21. The importance of integrating metabolome analysis of serum with selected serum exosomal miRs in mCRPC patients has been confirmed, suggesting their potential utility for distinguishing of mCRPC from BPH.


Assuntos
MicroRNAs , Hiperplasia Prostática , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , MicroRNAs/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Soro/metabolismo , Citratos , Lactatos , Acetatos
3.
J Immunol ; 212(7): 1244-1253, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38334457

RESUMO

A variety of commercial platforms are available for the simultaneous detection of multiple cytokines and associated proteins, often employing Ab pairs to capture and detect target proteins. In this study, we comprehensively evaluated the performance of three distinct platforms: the fluorescent bead-based Luminex assay, the proximity extension-based Olink assay, and a novel proximity ligation assay platform known as Alamar NULISAseq. These assessments were conducted on human serum samples from the National Institutes of Health IMPACC study, with a focus on three essential performance metrics: detectability, correlation, and differential expression. Our results reveal several key findings. First, the Alamar platform demonstrated the highest overall detectability, followed by Olink and then Luminex. Second, the correlation of protein measurements between the Alamar and Olink platforms tended to be stronger than the correlation of either of these platforms with Luminex. Third, we observed that detectability differences across the platforms often translated to differences in differential expression findings, although high detectability did not guarantee the ability to identify meaningful biological differences. Our study provides valuable insights into the comparative performance of these assays, enhancing our understanding of their strengths and limitations when assessing complex biological samples, as exemplified by the sera from this COVID-19 cohort.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , Imunoensaio/métodos , Citocinas/metabolismo , Soro/metabolismo
4.
Anal Chem ; 96(10): 4242-4250, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38408370

RESUMO

Sensitive detection of cancer biomarkers can contribute to the timely diagnosis and treatment of diseases. In this study, the whitespotted bamboo sharks were immunized with human α-fetoprotein (AFP), and a phage-displayed variable new antigen receptor (VNAR) single domain antibody library was constructed. Then four unique VNARs (VNAR1, VNAR11, VNAR21, and VNAR25) against AFP were isolated from the library by biopanning for the first time. All of the sequences belong to type II of VNAR, and the VNAR11 was much different from the rest of the three sequences. Then VNAR1 and VNAR11 were selected to fuse with the C4-binding protein α chain (C4bpα) sequence and efficiently expressed in the Escherichia coli system. Furthermore, a VNAR-C4bpα-mediated sandwich chemiluminescence immunoassay (VSCLIA) was developed for the detection of AFP in human serum samples. After optimization, the VSCLIA showed a limit of detection of 0.74 ng/mL with good selectivity and accuracy. Moreover, the results of clinical serum samples detected by the VSCLIA were confirmed by an automatic immunoanalyzer in the hospital, indicating its practical application in actual samples. In conclusion, the novel antibody element VNAR exhibits great potential for immunodiagnosis, and this study also provides a new direction and experimental basis for AFP detection.


Assuntos
Tubarões , Anticorpos de Domínio Único , Animais , Humanos , alfa-Fetoproteínas , Tubarões/metabolismo , Anticorpos , Soro/metabolismo , Receptores de Antígenos/química , Receptores de Antígenos/metabolismo , Antígenos
5.
FEBS Open Bio ; 14(1): 148-157, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37968795

RESUMO

Endometriosis and endometrial cancer are closely related to oxidative stress. However, the direct relationship between copper and zinc levels and oxidative stress in the extracellular and intracellular space remains unclear. The presented study is focused on the determination of serum Zn and Cu levels, glutathione concentration and enzyme activity in three groups: patients diagnosed with endometrial cancer (EC), patients diagnosed with endometriosis (EM), and a healthy control group. Spectrophotometric determination of trace elements revealed that levels of zinc and copper were lower in blood plasma of patients with endometriosis as compared with the other groups; however, there were no significant differences in the Cu/Zn ratio. Furthermore, significantly increased blood serum glutathione levels were detected in both EM and EC groups compared with the control group. While the activity of superoxide dismutase (SOD) was similar across the studied groups, we observed differences in the activity of other enzymes associated with oxidative stress, including glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione S-transferase (GST), between the control group and the EM and EC patients. Additionally, analysis of gene expression based on free circulating mRNA indicated significant differences in the expression of SOD isoenzymes between the patient groups and the control group; expression of GPx isoenzymes was also altered. Obtained results may have potential application in diagnostics as well as monitoring of endometriosis and endometrial cancer.


Assuntos
Neoplasias do Endométrio , Endometriose , Oligoelementos , Feminino , Humanos , Cobre , Antioxidantes/metabolismo , Isoenzimas/metabolismo , Soro/química , Soro/metabolismo , Endometriose/diagnóstico , Estresse Oxidativo , Zinco , Superóxido Dismutase/metabolismo , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo
6.
J Pept Sci ; 30(2): e3539, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37605343

RESUMO

Evaluation of the stability of peptide drug candidates in biological fluids, such as blood serum, is of high importance during the lead optimisation phase. Here, we describe the optimisation and validation of a method for the evaluation of the stability of a lead calcitonin gene-related peptide antagonist peptide (P006) in blood serum. After initially determining appropriate peptide and human serum concentrations and selection of the quenching reagent, the HPLC method optimisation used two experimental designs, Plackett-Burman design and Taguchi design. The analytical method was validated as complying with the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use guidelines. The optimised method allowed the successful resolution of the parent peptide from its metabolites using RP-HPLC and identification of the major metabolites of P006 by mass spectrometry. This paradigm may be widely adopted as a robust early-stage platform for screening peptide stability to rule out candidates with low in vitro stability, which would likely translate into poor in vivo pharmacokinetics.


Assuntos
Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina , Peptídeo Relacionado com Gene de Calcitonina , Humanos , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Projetos de Pesquisa , Soro/metabolismo
7.
Biophys Chem ; 305: 107153, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38088005

RESUMO

The classical approach restricts the detection of metabolites in serum samples by using nuclear magnetic resonance (NMR) spectroscopy; however, the presence of copious proteins and lipoproteins emphasize and necessitate the development of a contemporary, high-throughput tactic. To eliminate the lipoproteins and proteins from sera to engender filtered sera (FS), the study was executed with 50 µl serum obtained from five healthy individuals with 5 years of age difference from 25 to 45 years old and the application of a unique mechanical filter with molecular weight cut-off value of 2KDa. The 10 µl FS from each individual was pooled to make 50 µl final volume filled in a co-axial tube for acquisition of a battery of 1D/2D investigations at 800 MHz NMR spectrometer and the assigned metabolites was confirmed through mass spectrometry as well as by comparing 1H NMR spectra of individual metabolites. This innovative tactic is commissioning to reveal more than 100 metabolites. In contrast to the protein precipitation method, 24 new metabolites were recognized in the present study. The present innovative approach characterizes nucleosides, nitrogenous bases, and volatile metabolites that possibly produce a landmark for the delineation of a comprehensive metabolic profile applicable for detection of the molecular cause of pathogenicity, early-stage disease detection and prognosis, inborn error of metabolism, and forensic investigations exerting the least volume of FS and NMR spectroscopy. The assignment of 100 metabolites using 1H NMR-based FS is described for the first time in the present report.


Assuntos
Metabolômica , Soro , Humanos , Adulto , Pessoa de Meia-Idade , Espectroscopia de Prótons por Ressonância Magnética/métodos , Metabolômica/métodos , Espectroscopia de Ressonância Magnética/métodos , Soro/química , Soro/metabolismo , Lipoproteínas/análise , Lipoproteínas/metabolismo
8.
J Chromatogr A ; 1714: 464580, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38154349

RESUMO

It is important to recycle the bovine blood discarded at slaughter and develop it into high value-added bovine serum products. Biomimetic affinity chromatography (BiAC) resins have been developed to specifically purify bovine serum immunoglobulin G (Bs-IgG). The BiAC strategy was used to screen the resins with the best purification effect on Bs-IgG. Four resins with specificity for Bs-IgG adsorption were selected from 90 BiAC resins. Finally, BiAC-A5-87 was selected and used to purify Bs-IgG based on the results of SDS-PAGE and BCA protein quantification analysis. The adsorption capacity and purity of BiAC-A5-87 were 32.79 ± 3.57 mg/mL and 85.9 ± 1.21 % for Bs-IgG, respectively. The total protein recovery rate of Bs-IgG purified by BiAC-A5-87 was 89.78±3.52 %. The resin of BiAC-A5-87 column was recycled in 40 breakthrough cycles, and its Bs-IgG adsorption efficiency decreased by less than 10 %. After soaking BiAC-A5-87 in 1.0 moL NaOH solution for 64 h, its adsorption capacity for Bs-IgG was almost the same as that before soaking. The development of waste bovine serum not only realizes the utilization of blood resources and produces high economic benefits but also reduces the pollution of the environment.


Assuntos
Biomimética , Imunoglobulina G , Imunoglobulina G/metabolismo , Cromatografia de Afinidade/métodos , Soro/metabolismo , Adsorção
9.
Animal ; 17(12): 101029, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38064856

RESUMO

Metabolomics has been used to characterise many biological matrices and obtain detailed pictures of biological systems based on many metabolites. Plasma and serum are two blood-derived biofluids commonly used to assess and monitor the organismal metabolism and obtain information on the physiological and health conditions of an animal. Plasma is the supernatant that is separated from the cellular components after centrifugation of the blood that is first added with an anticoagulant. Serum is obtained after centrifugation of the blood that has been coagulated. The choice of one or the other biofluid for metabolomic analyses is related to specific analytical needs and technical issues, to problems derived by the collection and preparation steps, in particular when specimens are sampled from animals involved in field studies. Thus far, most of the metabolomic studies that compared plasma and serum have been carried out in humans and very little is known on the pigs. In this study, we used a targeted metabolomic platform that can detect about 180 metabolites of five biochemical classes to compare plasma and serum profiles of samples collected from 24 pigs. To also obtain a cross-species comparative metabolomic analysis, information for human plasma and serum derived from the same platform was retrieved from previous studies. Statistical analyses included univariate and multivariate approaches aimed at identifying stable and/or differentially abundant metabolites between the two porcine biofluids. A total of 154 (∼83%) metabolites passed the initial quality control, indicating a good repeatability of the analytical platform in pigs. Discarded metabolites included aspartate and biogenic amines that were already reported to be unstable in human studies. More than 80% of the metabolites had similar profiles in both porcine biofluids (average correlation was 0.75). Concentrations were usually higher in serum than in plasma, in agreement with what was already reported in humans. The univariate analysis identified 44 metabolites that had statistically different concentrations between porcine plasma and serum, of which 28 metabolites were also confirmed by the multivariate analysis. The obtained picture described similarities and differences between these two biofluids in pigs and the related human-pig comparisons. The obtained information can be useful for the choice of one or the other matrix for the implementation of metabolomic studies in this livestock species. The results can also provide useful hints to valuing the pig as animal model, in particular when metabolite-derived physiological states are relevant.


Assuntos
Metabolômica , Plasma , Humanos , Animais , Suínos , Metabolômica/métodos , Plasma/metabolismo , Soro/metabolismo
10.
J Alzheimers Dis ; 96(3): 1285-1304, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37980659

RESUMO

BACKGROUND: Alzheimer's disease (AD) is the most common type of dementia, affecting individuals over 65. AD is also a multifactorial disease, with disease mechanisms incompletely characterized, and disease-modifying therapies are marginally effective. Biomarker signatures may shed light on the diagnosis, disease mechanisms, and the development of therapeutic targets. tRNA-derived RNA fragments (tRFs), a family of recently discovered small non-coding RNAs, have been found to be significantly enhanced in human AD hippocampus tissues. However, whether tRFs change in body fluids is unknown. OBJECTIVE: To investigate whether tRFs in body fluids are impacted by AD. METHODS: We first used T4 polynucleotide kinase-RNA-seq, a modified next-generation sequencing technique, to identify detectable tRFs in human cerebrospinal fluid and serum samples. The detectable tRFs were then compared in these fluids from control, AD, and mild cognitive impairment patients using tRF qRT-PCR. The stability of tRFs in serum was also investigated by checking the change in tRFs in response to protein digestion or exosome lysis. RESULTS: Among various tRFs, tRF5-ProAGG seemed to be impacted by AD in both cerebrospinal fluid and serum. AD-impacted serum tRF5-ProAGG showed a correlation with the AD stage. Putative targets of tRF5-ProAGG in the hippocampus were also predicted by a computational algorithm, with some targets being validated experimentally and one of them being in a negative correlation with tRF5-ProAGG even using a small size of samples. CONCLUSIONS: tRF5-ProAGG showed the potential as an AD biomarker and may play a role in disease progression.


Assuntos
Doença de Alzheimer , Soro , Humanos , Soro/metabolismo , Doença de Alzheimer/genética , RNA de Transferência/genética , RNA de Transferência/metabolismo , RNA , Biomarcadores
11.
Int J Mol Sci ; 24(22)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38003446

RESUMO

Oxidative stress is involved in the development, progression, and complications of diabetes mellitus (DM). Oxidative modification of human serum albumin's cysteine-34 is a marker for oxidative stress-related pathological conditions. We aimed to evaluate the redox state of albumin in patients with DM to investigate possible correlations with age, diabetes duration, and disease control status. Plasma aliquots were collected from 52 participants (26 type 1 and 26 type 2 DM). Patients were divided into two groups according to their glycated hemoglobin levels less than or equal to and greater than 58 mmol/L. Albumin redox state was assessed with high-performance liquid chromatography by fractionating it into human mercaptalbumin (HMA) and human nonmercaptalbumin 1 and 2 (HNA1 and HNA2). Albumin redox fractions were differently related to the age of study participants. In age-matched T1DM and T2DM groups, the albumin redox state was essentially the same. Irreversibly oxidized HNA2 was positively correlated with diabetes duration, especially in the T1DM group. HNA was increased in people with an increased HbA1c (>58 mmol/mol). Our results support the hypothesis that oxidative stress plays a crucial role in DM pathogenesis and emphasize the importance of diabetes control on systemic oxidative burden.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Humanos , Hemoglobinas Glicadas , Albumina Sérica Humana/metabolismo , Soro/metabolismo , Estresse Oxidativo , Oxirredução
12.
Anal Chem ; 95(46): 17037-17045, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37939225

RESUMO

Protein-drug interactions in the human bloodstream are important factors in applications ranging from drug design, where protein binding influences efficacy and dose delivery, to biomedical diagnostics, where rapid, quantitative measurements could guide optimized treatment regimes. Current measurement approaches use multistep assays, which probe the protein-bound drug fraction indirectly and do not provide fundamental structural or dynamic information about the in vivo protein-drug interaction. We demonstrate that ultrafast 2D-IR spectroscopy can overcome these issues by providing a direct, label-free optical measurement of protein-drug binding in blood serum samples. Four commonly prescribed drugs, known to bind to human serum albumin (HSA), were added to pooled human serum at physiologically relevant concentrations. In each case, spectral changes to the amide I band of the serum sample were observed, consistent with binding to HSA, but were distinct for each of the four drugs. A machine-learning-based classification of the serum samples achieved a total cross-validation prediction accuracy of 92% when differentiating serum-only samples from those with a drug present. Identification on a per-drug basis achieved correct drug identification in 75% of cases. These unique spectroscopic signatures of the drug-protein interaction thus enable the detection and differentiation of drug containing samples and give structural insight into the binding process as well as quantitative information on protein-drug binding. Using currently available instrumentation, the 2D-IR data acquisition required just 1 min and 10 µL of serum per sample, and so these results pave the way to fast, specific, and quantitative measurements of protein-drug binding in vivo with potentially invaluable applications for the development of novel therapies and personalized medicine.


Assuntos
Albumina Sérica , Soro , Humanos , Albumina Sérica/química , Soro/metabolismo , Albumina Sérica Humana/química , Ligação Proteica , Análise Espectral , Preparações Farmacêuticas , Sítios de Ligação
13.
Analyst ; 148(21): 5525-5533, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37791739

RESUMO

Bovine serum albumin (BSA) containing buffers are the standard blocking buffer in biosensing, yet human serum is the intended application for most clinical sensors. However, the effect of human serum albumin (HSA) on binding assays remains underexplored. A simple and well-studied assay (human IgG/goat anti-human IgG) was investigated with a surface plasmon resonance (SPR) sensor to address this fundamental question in sensing. Calibrations were performed with buffers containing various concentrations of bovine or human serum albumin, as well as full and diluted bovine or IgG-depleted human serum. It was found that HSA or human serum, but not BSA or bovine serum, significantly affected the SPR shift and binding constants of the assay. Interestingly, large differences were also observed depending on whether the animal or human antibody was immobilized on the SPR chip for detection, highlighting that matrix protein/analyte/receptor interactions play a significant role in the response. We find that the interaction of soluble HSA with human IgG interferes with the recognition region, affecting the binding constant, and thus results obtained in BSA are not necessarily applicable to clinical samples or in vivo conditions. We also clearly demonstrate why a minimum dilution of 1 : 10 is often required in SPR assays to remove most background effects. Taken together, these results show that: (1) BSA does not affect the binding constant between antibodies and thus serves its purpose well when only surface blocking is intended, (2) HSA is an adequate surrogate for human serum in assay optimization, and (3) blocking buffers should be prepared with HSA in the optimization steps of assays to be translated to human blood or serum.


Assuntos
Soroalbumina Bovina , Albumina Sérica Humana , Animais , Humanos , Albumina Sérica Humana/química , Soroalbumina Bovina/química , Ressonância de Plasmônio de Superfície/métodos , Soro/metabolismo , Imunoglobulina G , Ligação Proteica , Cinética
14.
Dokl Biochem Biophys ; 511(1): 145-150, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37833597

RESUMO

Alzheimer's disease is a rapidly progressive neurodegenerative disease, the development of which is associated with the accumulation of ß-amyloid oligomers, dysfunction of the α7-nAChR nicotinic acetylcholine receptor, and activation of inflammation. Previously, we showed that the neuromodulator Lynx1, which belongs to the Ly6/uPAR family, competes with ß-amyloid(1-42) for binding to α7-nAChR. In this work, we studied the expression and localization of Ly6/uPAR family proteins in the hippocampus of 2xTg-AD transgenic mice that model AD and demonstrate increased amyloidosis in the brain. Using real-time PCR, we showed a decrease in the expression of the genes encoding Lynx1, Lypd6b, and the postsynaptic marker PSD95, as well as an increase in the expression of the TNFα gene in the hippocampus of 2xTg-AD mice. Histochemical analysis showed that, in the hippocampus of 2xTg-AD mice, Lynx1 does not colocalize with α7-nAChR, which can lead to the development of pathology when the receptor interacts with oligomeric ß-amyloid. In addition, in 2xTg-AD mice, activation of systemic inflammation was shown, which manifests itself in a decrease in the serum level of SLURP-1, a Ly6/uPAR family protein capable of regulating inflammatory processes, as well as in an increase in the content of proinflammatory cytokines TNFα and TNFß. Thus, α7-nAChR dysfunction and maintenance of the inflammatory microenvironment in the brain in Alzheimer's disease may be associated with a decrease in the expression of Ly6/uPAR family proteins that regulate α7-nAChR activity and inflammation.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Receptores Nicotínicos , Animais , Camundongos , Receptor Nicotínico de Acetilcolina alfa7/genética , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Citocinas , Hipocampo/metabolismo , Inflamação/metabolismo , Camundongos Transgênicos , Doenças Neurodegenerativas/metabolismo , Receptores Nicotínicos/metabolismo , Soro/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
15.
Wiad Lek ; 76(8): 1742-1747, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37740965

RESUMO

OBJECTIVE: The aim: Study of the levels of leptin and the growth modulator TGF-ß1 in the blood serum of patients with hypertension, which occurs on the background of AO and without it. PATIENTS AND METHODS: Materials and methods: Carbohydrate metabolism was studied by the enzymatic method, the level of insulin in the blood (by the enzyme immunoassay method), the oral glucose tolerance test and the calculation of the NOMA index. RESULTS: Results: The data obtained in the work indicate a significant role of leptin in the formation of hypertension itself and the development of obesity, carbohydrate and lipid metabolism disorders. The increased level of transforming growth factor-ß1 in the blood of such patients can be used as a fairly informative marker of the unfavorable prognosis of these diseases. CONCLUSION: Conclusions: 1. In the control group, there was a significant increase in the initial values of heart rate, average levels of SBP and DBP, the frequency of hy-percholesterolemia and insulin resistance was established. 2. Significant disorders of lipid and carbohydrate metabolism and leptin synthesis were found in patients with hypertension, which occurs against the background of AO. 3. When analyzing the level of leptin depending on gender, a statistically significant increase in the level of blood leptin was found in the group of women with AH with AO compared to women with AH without AO and the control group. 4. A significant increase in the level of transforming growth factor-ß1 in blood serum of patients with hypertension was established.


Assuntos
Hipertensão , Leptina , Humanos , Feminino , Fator de Crescimento Transformador beta1 , Obesidade Abdominal/complicações , Soro/metabolismo , Obesidade
16.
PLoS One ; 18(7): e0284172, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37478072

RESUMO

Aged mitochondrial function can be improved with long wavelength light exposure. This reduces cellular markers of inflammation and can improve system function from fly through to human. We have previously shown that with age there are increases in cytokine expression in mouse serum. Here, we ask what impact 670nm light has on this expression using a 40 cytokine array in blood serum and retina in C57Bl6 mice. 670nm exposure was delivered daily for a week in 12 month old mice. This shifted patterns of cytokine expression in both serum and retina inducing a selective increase. In serum examples of significant increases were found in IL (interleukins) 1α, IL-7, 10, 16, 17 along with TNF-α and CXCL (chemokines) 9 and 10. In retina the increases were again mainly in some IL's and CXCL's. A few cytokines were reduced by light exposure. Changes in serum cytokines implies that long wavelengths impact systemically even to unexposed tissues deep in the body. In the context of wider literature, increased cytokine expression may be protective. However, their upregulation by light merits further analysis as cytokines upregulation can also be negative and there are probably complex patterns of interaction in the dynamics of their expression.


Assuntos
Citocinas , Soro , Animais , Humanos , Camundongos , Idoso , Recém-Nascido , Citocinas/metabolismo , Soro/metabolismo , Camundongos Endogâmicos C57BL , Retina/metabolismo , Mitocôndrias/metabolismo
17.
Microbiol Spectr ; 11(3): e0007623, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37199635

RESUMO

Fetuses diagnosed with fetal growth restriction (FGR) are at an elevated risk of stillbirth and adulthood morbidity. Gut dysbiosis has emerged as one of the impacts of placental insufficiency, which is the main cause of FGR. This study aimed to characterize the relationships among the intestinal microbiome, metabolites, and FGR. Characterization was conducted on the gut microbiome, fecal metabolome, and human phenotypes in a cohort of 35 patients with FGR and 35 normal pregnancies (NP). The serum metabolome was analyzed in 19 patients with FGR and 31 normal pregnant women. Multidimensional data was integrated to reveal the links between data sets. A fecal microbiota transplantation mouse model was used to determine the effects of the intestinal microbiome on fetal growth and placental phenotypes. The diversity and composition of the gut microbiota were altered in patients with FGR. A group of microbial species altered in FGR closely correlated with fetal measurements and maternal clinical variables. Fecal and serum metabolism profiles were distinct in FGR patients compared to those in the NP group. Altered metabolites were identified and associated with clinical phenotypes. Integrated multi-omics analysis revealed the interactions among gut microbiota, metabolites, and clinical measurements. Microbiota from FGR gravida transplanted to mice progestationally induced FGR and placental dysfunction, including impaired spiral artery remodeling and insufficient trophoblast cell invasion. Taken together, the integration of microbiome and metabolite profiles from the human cohort indicates that patients with FGR endure gut dysbiosis and metabolic disorders, which contribute to disease pathogenesis. IMPORTANCE Downstream of the primary cause of fetal growth restriction are placental insufficiency and fetal malnutrition. Gut microbiota and metabolites appear to play an important role in the progression of gestation, while dysbiosis induces maternal and fetal complications. Our study elaborates the significant differences in microbiota profiles and metabolome characteristics between women with FGR and normal pregnancies. This is the first attempt so far that reveals the mechanistic links in multi-omics in FGR, providing a novel insight into host-microbe interaction in placenta-derived diseases.


Assuntos
Retardo do Crescimento Fetal , Microbioma Gastrointestinal , Animais , Feminino , Humanos , Camundongos , Gravidez , Disbiose , Retardo do Crescimento Fetal/metabolismo , Retardo do Crescimento Fetal/microbiologia , Placenta/patologia , Estudos de Coortes , Fezes/microbiologia , RNA Ribossômico 16S/genética , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Adulto , Biodiversidade , Soro/metabolismo
18.
J Biomed Mater Res A ; 111(9): 1423-1440, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37021718

RESUMO

In tissue engineering, cells are grown often on scaffolds and subjected to chemical/mechanical stimuli. Most such cultures still use fetal bovine serum (FBS) despite its known disadvantages including ethical concerns, safety issues, and variability in composition, which greatly influences the experimental outcomes. To overcome the disadvantages of using FBS, chemically defined serum substitute medium needs to be developed. Development of such medium depends on cell type and application-which makes it impossible to define one universal serum substitute medium for all cells in any application. Here, we developed a serum substitute medium for bone tissue engineering (BTE) in a step-by-step process. Essential components were added to the medium while human bone marrow mesenchymal stromal cells (hBMSCs, osteoblast progenitor cells) were cultured in two-dimensional and three-dimensional substrates. In a 3-week culture, the developed serum substitute medium worked equally well as FBS containing medium in term of cell attachment to the substrate, cell survival, osteoblast differentiation, and deposition of extracellular matrix. In the next step, the use of serum substitute medium was evaluated when culturing cells under mechanical loading in the form of shear stress. The outcomes showed that the application of shear stress is essential to improve extracellular matrix formation while using serum substitute medium. The developed serum substitute medium could pave the way in replacing FBS for BTE studies eliminating the use of controversial FBS and providing a better-defined chemical environment for BTE studies.


Assuntos
Células-Tronco Mesenquimais , Engenharia Tecidual , Humanos , Engenharia Tecidual/métodos , Proliferação de Células , Soro/química , Soro/metabolismo , Osso e Ossos , Diferenciação Celular , Células Cultivadas
19.
Vet Immunol Immunopathol ; 258: 110576, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36863108

RESUMO

Autologous conditioned serum (ACS), i.e serum enriched with anti-inflammatory cytokines and growth factors, is a popular orthobiologic therapy used in equine practice. Costly specialized tubes containing glass beads are commonly used for ACS production. The objective of this in vitro study was to compare cytokine and growth factor levels in equine serum after incubation in three different tubes: commercial plastic ACS tubes (COMM); sterile 50 ml plastic centrifugation tubes (CEN); and 10 ml plastic vacutainer tubes (VAC). Blood from 15 healthy horses was incubated in the different tubes at 37°C for 22-24 h. The concentration of IL-1ß, IL-1Ra, IL-10, IGF-1 and PDGF-BB was determined by ELISA and compared between tubes. There was no difference in concentration of IL-1Ra and IGF-1 between CEN and COMM. PDGF-BB was higher in CEN vs. COMM (P < 0.0001). IL-1Ra and PDGF-BB was higher (P < 0.005 and P = 0.02, respectively) whereas IGF-1 was lower in VAC (P < 0.003) vs. the other tubes. The centrifuge tube performed similarly to the commercial ACS tube in cytokine and growth factor enrichment and has the potential to dramatically reduce the cost of ACS treatment. Cytokine enrichment of equine serum does not require blood incubation in specialized ACS containers.


Assuntos
Citocinas , Proteína Antagonista do Receptor de Interleucina 1 , Cavalos , Animais , Citocinas/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Becaplermina , Soro/metabolismo
20.
J Immunol Methods ; 514: 113437, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36736950

RESUMO

In Covid-19 and autoimmune patients, there are several similarities revealed in the immune responses (Liu et al., 2021; Woodruff et al., 2020). Earlier, we firstly detected a truncated (48 kDa) form of the unconventional Myosin 1C (48/Myo1C) in a fraction of proteins soluble in 10% 2,2,2-trichloroacetic acid (TCA). These proteins were obtained from blood serum of patients with autoimmune diseases, such as multiple sclerosis, systemic lupus erythematosus, and rheumatoid arthritis (Kit et al., 2018). Here, we demonstrated that content of 48/Myo1C was also elevated in blood serum of the severe Covid-19 patients. Whereas in blood of 28 clinically healthy human individuals regularly tested for Covid-19 infection, the amount of this protein was undetectable or very low, in blood of 16 of 28 patients hospitalized with severe course of this disease, its amount was significantly increased. Dexamethasone, steroid hormone which is widely used for treatment of severe Covid-19 patients, induced time-dependent elevation of the 48/Myo1C in blood of such patients. The 48/Myo1C dose-dependently suppressed the viability of anti-CD3-activated lymphocytes of human peripheral blood. Recently, we used affinity chromatography on the magnetic poly(glycidyl-methacrylate) (mag-PGMA-NH2) microparticles functionalized with Myo1C and MALDI-TOF mass spectrometry with molecular modeling in silico in order to identify potential molecular partners of the 48/Myo1C. It was found that 48/Myo1C might bind to component 3 of the complement system and the anti-thrombin-III (Starykovych et al., 2021). Thus, the mechanisms of the pathogenic action of truncated form of Myo1C in severe COVID-19 patients may involve a suppression of the immune cells, as well as modulation of complement and coagulation cascades.


Assuntos
Doenças Autoimunes , COVID-19 , Esclerose Múltipla , Humanos , Miosina Tipo I/química , Miosina Tipo I/metabolismo , Soro/metabolismo , COVID-19/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...